MARK SCHEME for the May/June 2013 series

9702 PHYSICS

9702/22

Paper 2 (AS Structured Questions), maximum raw mark 60

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2013 series for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level components and some Ordinary Level components.

	Page 2	Mark Scheme Syllabus	Paper	
		GCE AS/A LEVEL – May/June 2013 9702	22	
1	(a) pov	ver = energy / time = (force × distance / time) = kg m ² s ⁻² / s = kg m ² s ⁻³	C1 C1 A1	[3]
	(b) (i)	units of L^2 : m ² and units of ρ : kg m ⁻³ and units of v^3 : m ³ s ⁻³ ($C = P / L^2 \rho v^3$) hence units of C: kg m ² s ⁻³ m ⁻² kg ⁻¹ m ³ m ⁻³ s ³ or any correct statement of component units argument /discussion / cancelling leading to C having no units	C1 M1 A1	[3]
	(ii)	power available from wind = $3.5 \times 10^5 \times 100 / 55$ (= 6.36×10^5) $v^3 = 3.5 \times 10^5 \times 100 / (55 \times 0.931 \times (25)^2 \times 1.3)$ $v = 9.4 \text{ m s}^{-1}$	C1 C1 A1	[3]
	(iii)	not all kinetic energy of wind converted to kinetic energy of blades generator / conversion to electrical energy not 100% efficient / heat produced in generator / bearings etc (there must be cause of loss and where located)	B1 B1	[2]
2	(a) forc	ce = rate of change of momentum	A1	[1]
	(b) (i)	horizontal line on graph from $t = 0$ to t about 2.0 s ± ½ square, $a > 0$ horizontal line at 3.5 on graph from 0 to 2 s vertical line at $t = 2.0$ s to $a = 0$ or sharp step without a line horizontal line from $t = 2$ s to $t = 4$ s with $a = 0$	M1 A1 B1 B1	[4]
	(ii)	straight line and positive gradient starting at (0,0) finishing at (2,16.8) horizontal line from 16.8 from 2.0 to 4.0	M1 A1 A1 M1 A1	[5]
3		point where (all) the weight (of the body) considered / seems to act	M1 A1	[2]
	(b) (i)	vertical component of $T (= 30 \cos 40^\circ) = 23 \text{ N}$	A1	[1]
	(ii)	the <u>sum</u> of the clockwise moments about a <u>point</u> equals the <u>sum</u> of the anticlockwise moments (about the same point)	e B1	[1]
	(iii)	(moments about A): 23 × 1.2 (27.58) = 8.5 × 0.60 + 1.2 × W working to show W = 19 or answer of 18.73 (N)	M1 M1 A1	[3]
	(iv)	(<i>M</i> = <i>W</i> / <i>g</i> = 18.73 / 9.81 =) 1.9(09) kg	A1	[1]

	Page 3		Mark Scheme	Syllabus	Paper		
			GCE AS/A LEVEL – May/June 2013	9702	22		
	• • •		equilibrium) resultant force (and moment) = 0 ard force does not equal downward force / horizontal component of T		B1		
			nced by forces shown		B1	[2]	
4	(a) app dia	baratu gram	B1 B1	[2]			
		specks / flashes of light in random motion					
	(c) car sm	nnot s oke p	(B1)				
	cor	ntinuous motion of smoke particles implies continuous motion of molecules					
	ran	andom motion of particles implies random motion of molecules					
					max. 2	[2]	
5	(a) (i)		fλ 40 / 50 = 0.8(0) m		C1 A1	[2]	
	(ii)		es (travel along string and) reflect at Q / wall / fixed dent and reflected waves interfere / superpose	end	B1 B1	[2]	
	(b) (i)		es labelled at P, Q and the two points at zero displace nodes labelled at the three points of maximum displa		B1 B1	[2]	
	(ii)	(1.5,	λ for PQ hence PQ = 0.8 × 1.5) = 1.2 m		A1	[1]	
	(iii)		1 / <i>f</i> = 1/50 = 20 ms s is ¼ of cycle		C1 A1		
			zontal line through PQ drawn on Fig. 5.2		B1	[3]	
6	(a) cha	arge =	current × time		B1	[1]	
	(b) (i)	P = =	V^2 / R (240) ² / 18 = 3200 W		C1 A1	[2]	
	(ii)	I = \	// <i>R</i> = 240 / 18 = 13.3 A		A1	[1]	
	(iii)	char	rge = It = 13.3 × 2.6 × 10 ⁶ = 3.47 × 10 ⁷ C		C1 A1	[2]	
	(iv)	num num	ber of electrons = $3.47 \times 10^7 / 1.6 \times 10^{-19}$ (= 2.17 × ber of electrons per second = 2.17 × $10^{26} / 2.6 \times 10^6$	10 ²⁶) ⁵ = 8.35 × 10 ¹⁹	C1 A1	[2]	

	Page 4		e 4 Mark Scheme Sylla		Paper	
			GCE AS/A LEVEL – May/June 2013	9702	22	
7	(a)	()	206 and <i>X</i> = 82 4 and <i>Z</i> = 2		A1 A1	[2]
	(. ,	s-energy is conserved s on rhs is less because energy is released		B1 B1	[2]
	• •		eted by external conditions/factors/environment xamples temperature and pressure		B1	[1]